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SUMMARY

It is assumed that a large number of observatiam & bivariate normal population are
given. These can be used for classical statisitifatence about the mean. Sometimes
the investigator averages data and makes the imtferdeased on this “sample of means”.
Such an averaging procedure, when not justifiedth®y non-normality of the data,
causes loss of information.

The aim of this paper is to establish by how mubbk guality of an ellipsoidal
confidence region based on the “sample of meansifésior compared with the “raw

sample”.
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1. Introduction

Most classic statistical methods of multivariatelgsis are based on the
assumption that data have multivariate normalitistion. There are many tests
investigating this assumption, in fact more thdty;fisee for example Mecklin
and Mundfrom (2004). When there is lack of normyalitccording to the central
limit theorem, a fixed number of data can be avedagnd the inference made
on this “sample of means”. On the other hand when data have normal
distribution such an averaging procedure is supeu, and can even degrade
statistical inference, as it causes loss of infeiona In this paper it is shown by
how much the quality of an ellipsoidal confidenegion based on the “sample
of means” can be inferior compared with the “rampke”.

Let us assume we have a random sample ofrsizen(k from a bivariate
normal distribution:
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Xij ~Na(p,Z) iid. i=Ll.m, j=1.Kk. (1)

Now, let us assume that instead of the “raw” samplewe are given only

m arithmetic means
- 1k .
Xi. Z—ZXij i=1..m,
k =1

Yi =X, ~ Nz(u,%zj i=1..m (2)

The aim of this paper is to establish how much‘thes of information”
caused by averaging in model (2) influences thdityuaf estimation ofp. The
same problem in the univariate case was discussédrasiska (2003).

2. Results

The point estimates qf in both models (1) and (2) have the same vales, a

. — 1 mk 1 m_ —
p=X=—73 2 Xj=—2Xi. =Y.
mki=1j=1 Mj=

However the situation is quite different with th#ipsoidal confidence
regions fory, or more precisely with their areas. The 108{% confidence
region forp under model (1) based on Hotteling's T2 is thgsdid

2(n-1)

el -n s -)s 2 ®

where

Szi =i§ i (XU —YXX”' —Y)’ .
n-1jz1j=1

Fryn,a i the uppera [100% point of theF distribution with (ny ,ny)degrees

of freedom.
The 100(1e)% confidence region fop under model (2) is

2(m-1)

{p. : m(Y - u)' §_l(7 - ll) < M2 F2 m-2,a } (4)
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where
éz—g(Yi —V)(Yi —V)’ .

Let us compare the areas of ellipsoids (3) andTHhg area of ellipsoid (3) is
given by

n-1
A= Zﬂm F2n-2,a E{/E

while the area of ellipsoid (4) is

z\zzwmm_‘_lz) Fam-oa 39

Because (Johnson and Kotz, 1972)

(n-18

|Z| - X%—l D(%—Z ,

where x%_l and xﬁ_z are independen)t2 variables withn-1 andn-2 degrees
of freedom we can write

2
A~ n(n—1—TZ) Fon-2a D{/ﬁ Xn-1Xn-2
and analogously
— 2n
A~ m (Fs 2. Q/M X K-z

Using the equalities

) g (2-ge

we have



60 J. Tarasiska

A
ESES

E(Xn-1)E(Xn-2) = ( 1 I'( ) 2

and in the same mann&(X ;1 )E(Xm-2) =m-2.
Thus finally we get

E(K) n-2 EFZm 20 EE Xm-1 E(Xm—z) — F2m—2,0( _
E(A) m-2 Fopog E(n-1)E(n-2)  Fan-20

In the case of variance we have

Var(A)= 4 an 2q|2|[ﬂE()( —1)E()<n 2) (E(X —1) (E(Xn 2) =

n (nT[22)
= ﬁ Fin-2a]Z Bn-1)(n-2)-(n-2)°] =
4 41?0
=WF22,H—2,G|Z|(n_2): 2) an 2G|Z|

and

Var(A)= #ﬂzz) Fom-2al%]-

Thus we obtain

Var(ﬂ) _n-2 DFzzm—z,a
var(A) m-2 F2 ,

Table 1 contains the quotients

E(A) and Var(A)
E(A) Vvar(A)

in the casa=100 and different numbers of averaged observafamsodel (2)
i.e. k=2, 5, 10, 20. The upper values in the cells areaf®0% confidence
ellipsoid, the middle ones for a 95% confidencépstlid, and the lower ones
for a 99% confidence ellipsoid.
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Tablel. Ei and YA for n=100,k=2, 5, 10, 20

Var(A

K 2 5 10 20
E(K) 1.025 1.113  1.320 2.317
—\ 1.033 1151  1.443 3.092
E A) 1.051 1.245  1.791 6.382

Var(ﬂ) 2145 6.744 21.360 175.368
2178 7.208 25.522 312.327
Var(A) 2.257 8.443 39.305 1330.591

Now let us consider the distribution = A/ A . We have
(n-1)s=k(m-1)5+ iglél(xij ~Xidxi - Xig
and
-m-2Fon-2a 1
n-2 Fomog VL

_A
R

where T ﬂ:’_lllJE and 1:/%E S (STIVastava, 2002; Johnson and

Kotz, 1972, p.202). Hence the probability densitmdtion (p.d.f.) of Qis
-1 %), where g is the p.d.f. of Fopkoi) o(m-2), a-medefree

n-2 Fp m-2a

-2 Fone
_m 2 _F2.n-2qa .
n=-2 F m-2qa

Figure 1 shows the p.d.f. @ for a 95% confidence ellipsoid=100 and
different k. Figure 2 shows the p.d.f. o for n=100, k=10 and three
confidence levelso(=0.01, 0.05, 0.1).

If we are interested irlPr(K > A) we have

_ -2 Fo e -
Pr(A>A)=G[(n 2D2’m 2 _1}Dm 2],

m-2 Fpn-2a m(k -1)

where G is the c.d.f. of Fopk-1) 2(m-2). Table 2 gives the probabilities of
A > A for n=100;k=2, 5, 10, 20p=0.1, 0.05, 0.01.
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Figure 1. The p.d.f.s of for n=100;0=0.05;k=2, 5, 10

Figure 2. The p.d.f.s of for n=100;k=10; 0=0.1, 0.05, 0.01

Table2. Pr(A > A) for n=100

k 2 5 10 20

0.1 0.593 0.668 0.749 0.862
0.05 0.620 0.719 0.817 0.928
0.01 0.682 0.821 0.925 0.988
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3. Conclusions

1. Averaging a small number of observations causedijhany increase
in the expected area of the ellipsoidal confidemreggon for the vector
of means (sea=100,k=2 in Table 1). However, it does have a great
influence on the variance of the area. The proliglaf enlargement
of the area is also significant (see Table 2).

2. The greater the confidence level, the greater & itffluence of
averaging on the area (see Figure 2 and Table 2).

4. Example

As an example let us consider a part of Fishensoizs data on Iris Setosa
(Fisher, 1936). The part being considered cont&hobservations for sepal
length and sepal width. The hypothesis of bivariaiemal distribution of data
is not rejected, as thevalues for tests based on Mardia’s measures oirsss
and kurtosis are, respectively,l and 0.849.

3.57

not averaged

33, Loos averaged

5.1

Figure 3. 95% confidence regions for
Figure 3 presents 95% confidence regiongifoone based on the original

50 pairs of observations and the other on 25 p#irsaveraged data (hence
k=2). The areas of the regions afe=0. 03&86d A =0.0402. Therefore
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averaging (unjustified, because the data are nyrardarged the confidence
region. Withn =50 andk = 2the probability of enlargement is 0.672.
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